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MODELING OF IRREVERSIBLE PROCESSES BY
ANALOGY METHODS OF STATISTICAL MECHANICS

G. P. Yasnikov UDC 536-12

Analogies to statistical mechanics of a Gibbs ensemble are constructed on the basis of the re~
flection method for dissipative macroscopic processes,

The formalism of classical and irreversible thermodynamics can be used successfully to construct math-
ematical models of a broad class of different processes, particularly control processes [1]. This is primarily
due to the existence of a profound analogy between the equations of a whole range of dynamic systems and
thermodynamics. The analogy between nonequilibrium thermodynamics and analytical mechanics was analyzed
in detail in [2, 3], where it was shown that thermodynamic relations can be represented in the form of La-
grange or Hamilton equations, The basis for this formalism is an artificial method of introducing the so-called
"mirror reflected system'" with negative dissipation and decreasing entropy [4].

The Lagrangian of the total system, including the original and reflected parts, can be represented in the
form

& =K (i, x;)—.-QI—R(xze, )+ —;—R*()‘cf, ) — T (%, x). (1)

Here the functions IZ, P{f, R, R* are constructed on the basis of specific expressions for the kinetic and poten-
tial energies and the dissipation function,

By means of [1] one can introduce the generalized momenta

9% 9K 1 R . 0% 0K , 1 0R* (2)
= ox; O, 2 ax,-’pf' oxf ax:‘+2 ax}
and the Hamiltonian
H6 = px; + pi 5 — L. (3)

Here and below doubly repeated subscripts imply summation. For an appropriate choice of the functions R and
R*,  is an integral of motion,

For a system of material points, moving in a medium with a linear resistance law, the functions (1)~(3)
are [4]

- 1 . 1 - 4
&= Quxr, — 3 fihx?‘xk‘l-? FipXeXf — bipXFxy, 4
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7 = aikk?& -+ bk = ag! <Pi + —;‘fimxf,)(ﬂf—‘;‘fkmx;u)—“bikxth, (5)

. 1 - 1
pi; = a?h x?: — —2—* r,-kx;‘, p?' =a,-kxk+ —2—rikxk.
The matrix elements ajk, bik, rik are the coefficients of the quadratic forms of the kinetic K = !/, aikxixkx and
potential V = Y, b;ixix} energies, and the dissipative function D = Y, rjpxixy.

The same formalism can be used in nonequilibrium thermodynamics [2]. For a thermodynamic system
whose state is described by the set of parameters {xi}, in the case of purely dissipative processes (% = 0) the
functions (1)-(3) are '

,2 = —;*L;};l (xka - xi*)::h) —gikx?xk, (6)
1 .

3 = o G R + 28 LuilimP Py (7)

pF= —;—Lﬁka, pmz——;—L;.‘ixf, (8)

where gy are the matrix elements of the coefficients of the quadratic form, being the series expansion of the
entropy in deviations {xi} of the parameters from their equilibrium values, gij =9%5/0 x;9x}.

Using the Hamiltonian 7% and (5), (7), one can write the system of canonical Hamiltonian equations

: 08 - 0 - 0% - Ok
A A e A 2
P oxF X =, opF pi= ox, » X op: - 9)
In the present work the Hamilton formalism considered above is used to construct the statistical mechan~
ics of dissipative systems and corresponding analogies for irreversible thermodynamic processes.

* Consider the statistical ensemble in the phase space of generalized coordinates and momenta x;, Xi‘( » Dis
p; of the total system. Due to the ei(istence of relation (9) one can write the Gibbs— Liouville equation for the
distribution function F (xi, Xi* » Pi» Py ) in the form [5]

i——gf = LF, (10)
where i=(—1)"? and
[ 0% 0d  o# 0 n o# d a# 9
h Op; 0Ox; dx;  dp; dp* O0xF  Ox* OpF ’ (11)

The nonstationary solution of Eq. (10) can be represented by an expansion of F in a Fourier series of
eigenfunctions of the Liouville operator L [5].

Standard calculations show that dF/dt = 0, i.e., F is an integral of motion along the phase trajectory.
For stationary ensembles the Hamiltonian 5% (3), (7) is also an integral of motion. Therefore, according to the
general ideas of statistical physics [6] the distribution function can be presented in the form

F = exp (a3 - c). (12)

The constant ¢ is found from the normalization condition, and o is determined by the specific physical content
of the problem. :

Thus, the function (12) is the analog of the Gibbs canonical distribution, and describes both the ensemble
of mechanical particle systems in the presence of friction, and the ensemble of thermodynamic systems under-
going irreversible processes. Various mean-statistical quantities can be calculated on the basis of the distri-
bution function (12) by the apparatus of statistical physics [5]. Application of the apparatus of statistical me-
chanics to ensembles of macroscopic thermodynamic systems may seem artificial at first glance. It can be
quite useful, however, in the mathematical modeling of a wide class of technological processes, particularly
those used for heterogeneous systems. Various local fluctuations, related to the inhomogeneity of hydrody-
namic, temperature, and concentration fields, occur in these systems. This is precisely related to the neces-
sity of applying statistical methods [7].

As an example of using the distribution function (12) for a mechanical dissipative system we consider
the ensemble of local pulsating particle motions of a suspended layer. In the stationary regime the pseudo-
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fluidized dissipating power is compensated by the continuous energy supply from the mean flow to large-scale
motions and further to small-scale fluctuations at which the dissipation process occurs.

According to the method discussed above we replace the carrying current of the associated system,
Since the particle interaction with the flow occurs at the particle surface, we can put x; = x’f in Egs. (1)-(5).
In this case the system becomes self-oscillating or '"quasiconservative''. Its Hamiltonian in a Cartesian co~
ordinate system equals, according to (1), (3), and (5)

2@=2H=2(K+V)=2[Z—g—£i—+-V(x1---x}1)}, (13)
and the distribution function (12) is
F = exp {~?—fiej_—£} , (14)

where H = K+ V means the total particle energy; F= ch, 6 = —(201)_1, distribution parameters; and pi, parti-
cle momentum,

Integrating (13) over the spatial coordinates xj and over the velocities of all particles except one, we
reach a Maxwell distribution in one-particle velocities

F(v)= (-?za)alzexp [ﬂ i ] , (15)

20
which was used in constructing an approximate statistical theory of a suspended layer [8].

The Gibbs—Liouville Eq. (10) can be simplified in the case of purely dlss1pat1ve processes, for which
relations (6)-(8) occur. Since in this case there is no analog to kinetic energy ( =0, K = 0), the generalized
momenta are linear combinations of the generalized coordinates (8), and they can be eliminated, transforming
from the distribution function F (xj, x"i‘, Dis p’:) to the distribution f(xj, x’;) in space coordinates. Formally
this can be obtained by integrating (10) over momenta. Taking into account the obvious relation

flxs x2) = f F(x;, x¥, py, p#)dT,, (16)

where dl'p =dp;.. dpndpl, but the integration is performed over the whole variable range I'p, after standard
transformations [9] (10) acquires the form

o o

af
6t+ 7

” o T =0. (17)

Phenomenological relations can be written down for the guantities %, x’:
%= —LapXa (%1 .. - %a), xF = LpXi (xF ... ), (18)
where Xj, Xf;< play the role of thermodynamic forces. The function f(x;, x’ik) retains the property of integral of
motion, The solution of Egq. (17) can be represented in the form

t
) — .3 ok x. — g%k % 1
f_(xz, x¥) ;0 HPZ[ at x; — aFk g +§ (@t x; + az "x*)dtJ (19)

The constants cI . ak k are determined by the initial conditions and by the normalization. It is seen from
the solution (19) that for the evolution time of the distribution function a distinctive regular regime is possible,
for which only one term is important in the sum over k, starting at some moment of time, Besides, it is poss1—
ble, in principle, to eliminate the parameter xl of the reflected system, In analogy with (16), integrating over
the region 'y of variation of X1- we have

! t
Fl) = 5 f(xs, x¥)dle = 2 A% exp 2 (—-aiﬁ faus S a xidt) . (20)
Fre E i b
This function satisfies the equation

o of (21)

at ' Tox,
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The latter relations were used to describe the evaporation process of a polydisperse system of drops
[10].

Consider a stationary solution of Eq. (17), Following [6], we introduce the generating function of the
total system

| S S
P = —Q—Likl (xF %% 4 x:23). (22)
Hence we find
. 0p
X =Ly, Ep = — LpXp = — Lgui%s,
" - (23)
. de
xF = Lm*—— = LyXi = Lyguxk.
axk
By means of (23) the stationary equation (17) is transformed to the form
af of
* P ' =
X TnF X; o, 0. (24)
We choose f(xj, x’{) in the form
o
Flx, x3) = eXP'—Q*(“ Lip@rixi%i 4 Lingraixf x7). (25)

It satisfies Eq. (24) if S = 2¢ = 0, The latter condition is satisfied, since entropy production in the basic
system is compensated by its decrease in the reflected one, Integrating (25) over the coordinates of the re-
flected system, we obtain a distribution function for the original system

fx); = Aexp (——— —-;— aLikgikxkx,-) = Aexp {(— aD(x;)), (26)

where D (xj) is the dissipative function.

The same result was obtained in [7] by the method of the Jaynes formalism [7]. We note that (17) is a
special case of the continuity equation

9

+~—i—( 5f) + e () = 0. (27)
For real systems (x)i'= = () it was used many times in the one-dimensgional case to describe the evolution of the
distribution of polydisperse systems over the radius in mass exchange processes [10, 12, 13]. Effective meth~
ods of solving Eq. (27) with nonlinearities due to the kinetic process were developed in [12]. These methods
can also be used in solving the Gibbs~ Liouville Eq. (10), The quantities xlf and x; f appearing under the di-
vergence sign, can be considered as generalized flows, obeying the phenomenologlcal laws [14]:

: o) g ‘9 (/)
J, = x,f = — CJE = 2
d= ] = = L= I < = L (28)
where u (f) is the chemical potential for configuration f in phase space. Introducing the diffusion coefficient Dx:
»JizwL_aﬂ_af_:_‘Dx of ,
of Ox; 0x;
(29)
®_ g ow Of of
W= Lor g = Degr s
we transform (27) into a diffusion equation in phase space
o _ o 0%
ot =D ( 0x;0x; o 6x;"6x¢*) (30)

A similar equation for real systems is used in analyzing random walk aud in the theory of Brownian mo-
tion [15].

If instead of D, one uses the operator representation of the diffusion coefficient D= De(1+7 ¥ot) 11161,
making it possible to take into account the presence of some additional relaxation process in the system, in-
stead of (30) we obtain a diffusion equation of more general form:
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. Y N AV &f
At =Dl 47— — . 31
ot o x( + at)( 0x,0x; ax?a&f) 1)

By the methods congidered in [ 14] one can obtain analogies for the Fokker—Planck equations of rota-
tional diffusion, and so on,

Thus, the formalism considered in this paper can be useful in modeling a wide class of different macro-
scopic processes.

NOTATION

x; and xf, generalized co?krdinates of the initial and reflected systems; 'I‘é, \7, R, R*, functions appearing
in the Langrangian £ (1); pi, pj, generalized momenta; 7%, generalized Hamiltonian; ki, X, generalized veloci-
ties (flows); K, V, D, aiks biks, Tik, kinetic and potential energies, the dissipative function and matrix elements
of the corresponding quadratic forms; Ljk, matrix elements of the phenomenological cioefficients; S, system
entropy; L, Liouville operator; F (xj, x’{, Pi» p’ik), distribution functions in the phase space of the appropriate
variables; H, Hamiltonian of the mechanical conservative system; m, particle mass; ¢, generating function de-
fined in (22); Jj, Ji* » thermodynamic flows; Dy, diffusion coefficient for phase space, 7, relaxation time; *, con-
jugate system; and -, time differentiation,
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